Limit theorems for some adaptive MCMC algorithms with subgeometric kernels

نویسنده

  • YVES ATCHADÉ
چکیده

Abstract. This paper deals with the ergodicity (convergence of the marginals) and the law of large numbers for adaptive MCMC algorithms built from transition kernels that are not necessarily geometrically ergodic. We develop a number of results that broaden significantly the class of adaptive MCMC algorithms for which rigorous analysis is now possible. As an example, we give a detailed analysis of the Adaptive Metropolis Algorithm of Haario et al. (2001) when the target distribution is sub-exponential in the tails.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Limit Theorems for Some Adaptive Mcmc Algorithms with Subgeometric Kernels: Part Ii

We prove a central limit theorem for a general class of adaptive Markov Chain Monte Carlo algorithms driven by sub-geometrically ergodic Markov kernels. We discuss in detail the special case of stochastic approximation. We use the result to analyze the asymptotic behavior of an adaptive version of the Metropolis Adjusted Langevin algorithm with a heavy tailed target density.

متن کامل

Explicit control of subgeometric ergodicity

This paper discusses explicit quantitative bounds on the convergence rates of Markov chains on general state spaces, under so-called drift and minorization conditions. The focus of this paper is on practical conditions that lead to subgeometric rates. Such explicit bounds are particularly relevant in applications where a family of Markov transition probabilities {Pθ : θ ∈ Θ} is considered and f...

متن کامل

Limit Theorems for subgeometric Markov chains

This paper studies limit theorems for Markov Chains with general state space under conditions which imply subgeometric ergodicity. We obtain a central limit theorem and moderate deviation principles for additive not necessarily bounded functional of the Markov chains under drift and minorization conditions which are weaker than the Foster-Lyapunov conditions. The regeneration-split chain method...

متن کامل

Bounds on Regeneration times and Limit Theorems for Subgeometric Markov Chains Bornes Des Temps De Régénération Et Théorèmes Limites Pour Des Chaînes De Markov Sous-géométriques

Abstract. This paper studies limit theorems for Markov Chains with general state space under conditions which imply subgeometric ergodicity. We obtain a central limit theorem and moderate deviation principles for additive not necessarily bounded functional of the Markov chains under drift and minorization conditions which are weaker than the Foster-Lyapunov conditions. The regeneration-split ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008